A regularized smoothing Newton method for solving the symmetric cone complementarity problem
نویسنده
چکیده
The symmetric cone complementarity problem (denoted by SCCP) is a class of equilibrium optimization problems, and it contains the standard linear/nonlinear complementarity problem (LCP/NCP), the second-order cone complementarity problem (SOCCP) and the semidefinite complementarity problem (SDCP) as special cases. In this paper, we present a regularized smoothing Newton algorithm for SCCP by making use of Euclidean Jordan algebraic technique. Under suitable conditions, we obtain global convergence and local quadratic convergence of the proposed algorithm. Some numerical results are reported in this paper, which confirm the good theoretical properties of the proposed algorithm. © 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems
This paper extends the regularized smoothing Newton method in vector optimization to symmetric cone optimization, which provide a unified framework for dealing with the nonlinear complementarity problem, the second-order cone complementarity problem, and the semidefinite complementarity problem (SCCP). In particular, we study strong semismoothness and Jacobian nonsingularity of the total natura...
متن کاملA Novel Inexact Smoothing Method for Second-Order Cone Complementarity Problems
A novel inexact smoothing method is presented for solving the second-order cone complementarity problems (SOCCP). Our method reformulates the SOCCP as an equivalent nonlinear system of equations by introducing a regularized Chen-Harker-Kanzow-Smale smoothing function. At each iteration, Newton’s method is adopted to solve the system of equations approximately, which saves computation work compa...
متن کاملGlobal convergence of sequential injective algorithm for weakly univalent vector equation: application to regularized smoothing Newton algorithm
It is known that the complementarity problems and the variational inequality problems are reformulated equivalently as a vector equation by using the natural residual or Fischer-Burmeister function. In this short paper, we first study the global convergence of a sequential injective algorithm for weakly univalent vector equation. Then, we apply the convergence analysis to the regularized smooth...
متن کاملA full Nesterov-Todd step infeasible interior-point algorithm for symmetric cone linear complementarity problem
A full Nesterov-Todd (NT) step infeasible interior-point algorithm is proposed for solving monotone linear complementarity problems over symmetric cones by using Euclidean Jordan algebra. Two types of full NT-steps are used, feasibility steps and centering steps. The algorithm starts from strictly feasible iterates of a perturbed problem, and, using the central path and feasi...
متن کاملUniform nonsingularity and complementarity problems over symmetric cones
Abstract. We study the uniform nonsingularity property recently proposed by the authors and present its applications to nonlinear complementarity problems over a symmetric cone. In particular, by addressing theoretical issues such as the existence of Newton directions, the boundedness of iterates and the nonsingularity of B-subdifferentials, we show that the non-interior continuation method pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 54 شماره
صفحات -
تاریخ انتشار 2011